lemme post a quick template... as a guide
[tex]\bf \qquad \qquad \qquad \qquad \textit{function transformations}
\\ \quad \\\\
% left side templates
\begin{array}{llll}
f(x)=&{{  A}}({{  B}}x+{{  C}})+{{  D}}
\\ \quad \\
y=&{{  A}}({{  B}}x+{{  C}})+{{  D}}
\\ \quad \\
f(x)=&{{  A}}\sqrt{{{  B}}x+{{  C}}}+{{  D}}
\\ \quad \\
f(x)=&{{  A}}(\mathbb{R})^{{{  B}}x+{{  C}}}+{{  D}}
\\ \quad \\
f(x)=&{{  A}} sin\left({{ B }}x+{{  C}}  \right)+{{  D}}
\end{array}\\\\
--------------------[/tex]
[tex]\bf \bullet \textit{ stretches or shrinks horizontally by  } {{  A}}\cdot {{  B}}\\\\
\bullet \textit{ flips it upside-down if }{{  A}}\textit{ is negative}\\
\left. \qquad   \right.  \textit{reflection over the x-axis}
\\\\
\bullet \textit{ flips it sideways if }{{  B}}\textit{ is negative}\\
\left. \qquad   \right.  \textit{reflection over the y-axis}[/tex]
[tex]\bf \bullet \textit{ horizontal shift by }\frac{{{  C}}}{{{  B}}}\\
\left. \qquad  \right. if\ \frac{{{  C}}}{{{  B}}}\textit{ is negative, to the right}\\\\
\left. \qquad  \right.  if\ \frac{{{  C}}}{{{  B}}}\textit{ is positive, to the left}\\\\
\bullet \textit{ vertical shift by }{{  D}}\\
\left. \qquad  \right. if\ {{  D}}\textit{ is negative, downwards}\\\\
\left. \qquad  \right. if\ {{  D}}\textit{ is positive, upwards}\\\\
\bullet \textit{ period of }\frac{2\pi }{{{  B}}}[/tex]
so, that said, a shfit to the left, means a positive 4 unit for what otherwise be the "x" group, so 
[tex]\bf f(x)=x^2+5x-6\implies f(x)=\stackrel{\textit{shifted 4 to the left}}{(x+4)^2+5(x+4)-6}[/tex]