[tex]\bf \qquad \qquad \qquad \qquad \textit{function transformations}
\\ \quad \\
% function transformations for trigonometric functions
\begin{array}{rllll}
% left side templates
f(x)=&{{  A}}sin({{  B}}x+{{  C}})+{{  D}}
\\\\
f(x)=&{{  A}}cos({{  B}}x+{{  C}})+{{  D}}\\\\
f(x)=&{{  A}}tan({{  B}}x+{{  C}})+{{  D}}
\end{array}
\\\\
-------------------\\\\[/tex]
[tex]\bf \bullet \textit{ stretches or shrinks}\\
\left. \qquad   \right. \textit{horizontally by amplitude } |{{  A}}|\\\\
\bullet \textit{ flips it upside-down if }{{  A}}\textit{ is negative}\\
\left. \qquad   \right. \textit{reflection over the x-axis}
\\\\
\bullet \textit{ flips it sideways if }{{  B}}\textit{ is negative}\\
\left. \qquad   \right. \textit{reflection over the y-axis}[/tex]
[tex]\bf \bullet \textit{ horizontal shift by }\frac{{{  C}}}{{{  B}}}\\
\left. \qquad  \right.  if\ \frac{{{  C}}}{{{  B}}}\textit{ is negative, to the right}\\\\
\left. \qquad  \right. if\ \frac{{{  C}}}{{{  B}}}\textit{ is positive, to the left}\\\\
\bullet \textit{vertical shift by }{{  D}}\\
\left. \qquad  \right. if\ {{  D}}\textit{ is negative, downwards}\\\\
\left. \qquad  \right. if\ {{  D}}\textit{ is positive, upwards}\\\\[/tex]
[tex]\bf \bullet \textit{function period or frequency}\\
\left. \qquad  \right. \frac{2\pi }{{{  B}}}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\
\left. \qquad  \right. \frac{\pi }{{{  B}}}\ for\ tan(\theta),\ cot(\theta)[/tex]
so hmmm   [tex]\bf \begin{array}{llcll}
f(x)=&0.5sin(x)&+2\\
&\uparrow &\uparrow \\
&A&D
\end{array}[/tex]
instead of going up/down by 1unit, it goes up/down by half
and then it's shifted upwards by 2, so the midline will end up at y = 2
but basically the same sin(x) graph, just a bit shorter due to the smaller amplitude.