Respuesta :
Part (a)
Mean = [tex] \frac{15+10+25+19+10+17}{6}=16 [/tex]
Range = 25 - 10 = 15
Median, [tex] Q_{2} [/tex] = 16 (Refer to the first picture)
Lower Quartile, [tex]Q_{1} [/tex] = 10
Upper Quartile, [tex]Q_{3} [/tex] = 22
Interquartile Range, IQR = [tex]Q_{3}- Q_{1}=22-10=12 [/tex]
Part (b)
The box plot is shown in the second picture below
Part (c)
Mean = 16
Subtracting 16 from each data value, find sum of the square of each answer and divide by 6
[tex] \frac{ (15-16)^{2} + (10-16)^{2}+ (25-16)^{2}+ (19-16)^{2}+ (10-16)^{2}+ (17-16)^{2} }{6} [/tex]
[tex] \frac{1+36+81+9+36+1}{6}= \frac{164}{6} =27.333... [/tex]
Standard deviation = [tex] \sqrt{27.333...}=5.23 [/tex] (rounded to 2 dp)
Mean = [tex] \frac{15+10+25+19+10+17}{6}=16 [/tex]
Range = 25 - 10 = 15
Median, [tex] Q_{2} [/tex] = 16 (Refer to the first picture)
Lower Quartile, [tex]Q_{1} [/tex] = 10
Upper Quartile, [tex]Q_{3} [/tex] = 22
Interquartile Range, IQR = [tex]Q_{3}- Q_{1}=22-10=12 [/tex]
Part (b)
The box plot is shown in the second picture below
Part (c)
Mean = 16
Subtracting 16 from each data value, find sum of the square of each answer and divide by 6
[tex] \frac{ (15-16)^{2} + (10-16)^{2}+ (25-16)^{2}+ (19-16)^{2}+ (10-16)^{2}+ (17-16)^{2} }{6} [/tex]
[tex] \frac{1+36+81+9+36+1}{6}= \frac{164}{6} =27.333... [/tex]
Standard deviation = [tex] \sqrt{27.333...}=5.23 [/tex] (rounded to 2 dp)