[tex]\bf log_{{  a}}(xy)\implies log_{{  a}}(x)+log_{{  a}}(y)
\\\\\\
% Logarithm of exponentials
log_{{  a}}\left( x^{{  b}} \right)\implies {{  b}}\cdot  log_{{  a}}(x)
\\\\\\
{{  a}}^{log_{{  a}}x}=x\impliedby \textit{log cancellation rule}\\\\
-----------------------------\\\\[/tex]
[tex]\bf log(x)=2.46-1.12log(y)\iff log_{10}(x)=2.46-1.12log_{10}(y)
\\\\\\
log_{10}(x)=2.46-log_{10}(y^{1.12})\implies log_{10}(x)+log_{10}(y^{1.12})=2.46
\\\\\\
log_{10}(x\cdot  y^{1.12})=2.46\implies 10^{\cfrac{}{}log_{10}(x\cdot  y^{1.12})}=10^{2.46}
\\\\\\
xy^{1.12}=10^{2.46}\implies \boxed{x=\cfrac{10^{2.46}}{y^{1.12}}}[/tex]