Using the Pythagorean theorem, we can calculate the apothem of the pentagon.
 We have then:
 [tex] a = \sqrt{12 ^ 2 - (\frac{14.1}{2}) ^ 2}
a = 9.7
   [/tex]
 Then, the area of the pentagon is given by:
 [tex] A = 5 * (\frac{1}{2}) * (L) * (a)
  [/tex]
 Where,
 L: side of the pentagon
 a: apotema
 Substituting values:
 [tex] A = 5 * (\frac{1}{2}) * (14.1) * (9.7)
A = 341.925
  [/tex]
 Rounding the nearest whole we have:
 
[tex] A = 342 cm ^ 2
 [/tex]
 Answer:
 the approximate area of the regular pentagon is:
 [tex] A = 342 cm ^ 2
 [/tex]