Refer to the figure and find the volume V generated by rotating the given region about the specified line.
ℛ3 about OC
                                             
                                          
                                          
                                        
											 
											The volume is 69.675.
It is the reverse of derivation. It is similar to the way of adding the slice to make it whole.
[tex]\rm Volume = \int\limits^a_b {\pi y^{2} } \, dx[/tex]
To find
The volume of the region [tex]\rm R_{3}[/tex].
The limit is from 0 to 1.
The first function is parabola second is the line.
Then volume will be given by
[tex]\rm Volume = \int\limits^3_0 {\pi y_{1}^{2} } \, dx -\int\limits^3_0 {y_{2}^{2} } \, dx \\\\\rm Volume = \int\limits^3_0 {\pi (3x^{\frac{1}{4} })^{2} } \, dx -\int\limits^3_0 {\pi x^{2} } \, dx \\\\ Volume = 9\pi \int\limits^3_0 {x^{0.5 } \, dx - \pi \int\limits^3_0 {x^{2} } \, dx \\\\Volume = 9\pi [\dfrac{x^{1.5} }{1.5} ]_{0}^{3} - \pi [\dfrac{x^{3} }{3} ]_{0}^{3}\\\\\rm Volume =\dfrac{ 9\pi}{1.5} (3^{1.5} -0^{1.5} ) - \dfrac{\pi }{3} (3^{3} -0^{3} )\\\\[/tex]
[tex]\rm Volume = 97.945 - 28.27\\\\ \rm Volume = 69.675[/tex]
Thus the volume is 69.675.
More about the integration link is given below.
https://brainly.com/question/18651211