Answer:
[tex]y =   - \frac{ \sqrt{3} }{3}x [/tex]
[tex] {x}^{2}  +  {y}^{2}  = 1[/tex]
Step-by-step explanation:
You are correct with the graph, the angle 
[tex] \frac{5\pi}{6} [/tex]
should lies in the second quadrant so the polar graph will lie in the second quadrant then go to the fourth quadrant. It would be a line not a circle.
For the equation, use the tangent equation because it has y and x in it
[tex] \alpha  =  \frac{5\pi}{6} [/tex]
[tex] \tan( \alpha )  =   \tan( \frac{5\pi}{6} ) [/tex]
[tex] \frac{y}{x}  =  -  \frac{ \sqrt{3} }{3} [/tex]
[tex]y =  -  \frac{ \sqrt{3} }{3} x[/tex]
For the next picture, the graph is correct, 
We know that 
[tex] \cos {}^{2} (3t)  +  \sin {}^{2} ( {}^{}3t )  = 1[/tex]
[tex] {x}^{2}  +  {y}^{2}  = 1[/tex]
Alternate Way:
[tex]x =  \cos(3t) [/tex]
[tex] \frac{ \cos {}^{ - 1} (x) }{3}  = t[/tex]
[tex]y =  \sin(3( \frac{ \cos {}^{ - 1} (x) }{3} ) [/tex]
[tex]y =   \sin( \cos {}^{ - 1} (x) ) [/tex]
Here we must imagine a triangle such that an angle has a hypotenuse 1, and a leg x, by definition the missing side is
[tex] \sqrt{1 -  {x}^{2} } [/tex]
by using the Pythagorean theorem.
[tex] \cos( \alpha )  =  \frac{x}{1} [/tex]
so
[tex] \sin( \alpha )  =  \frac{1 -  \sqrt{ {x}^{2} } }{1} [/tex]
[tex]y =  \sqrt{1 -  {x}^{2} } [/tex]
[tex] {y}^{2}  = 1 -  {x}^{2} [/tex]
[tex] {x}^{2}  +  {y }^{2}  = 1[/tex]