Respuesta :
The roots of the equation [tex]x^{2}[/tex]-15x +2 =0 are 14.865 and 0.135
What is completing the square method?
Completing the square method is one of the methods to find the roots of the given quadratic equation.
Given equation is:
[tex]x^{2}[/tex]-15x +2 =0
Using Completing the Square method we have
[tex]x^{2}[/tex]-15x +2 + [tex](\frac{15}{2})^{2}[/tex] - [tex](\frac{15}{2})^{2}[/tex] =0
Now,
[tex]x^{2}[/tex]-15x + [tex](\frac{15}{2})^{2}[/tex] - [tex](\frac{15}{2})^{2}[/tex] +2=0
or, [tex][x-(\frac{15}{2})]^{2}[/tex] - 225/4 +2 =0
or, [tex][x-(\frac{15}{2})]^{2}[/tex] -217*4 =0
or, [tex][x-(\frac{15}{2})]^{2}[/tex] = 217/4
or, [tex]x[/tex] = [tex]\pm \frac{14.73}{2} + \frac{15}{2}[/tex]
or, [tex]x_1[/tex]= 14.865, [tex]x_2[/tex]= 0.135
Thus, the roots of the quadratic equation are: 14.865 and 0.135
Learn more completing square method here:
https://brainly.com/question/8631373
#SPJ1