[tex]f(x) = 4 {x}^{2}  - 6x + 11[/tex]
[tex]f(10 + h) = 4 ({10 + h})^{2}  - 6(10 + h) + 11 \\ [/tex]
[tex]f(10 + h) = 4(100 + 20h +  {h}^{2}) - 60  -  6h + 11 \\  [/tex]
[tex]f(10 + h) = 400 + 80h + 4 {h}^{2}  - 60 - 6h + 11 \\ [/tex]
[tex]f(10 + h) =  4{h}^{2}  + 74h + 351[/tex]
_____________________________________________
[tex]f(10) = 4 ({10})^{2}  - 6(10) + 11[/tex]
[tex]f(10) = 400 - 60 + 11[/tex]
[tex]f(10) = 351[/tex]
_____________________________________________
Thus :
[tex] \frac{f(10 + h) - f(10)}{h}  =  \\ [/tex]
[tex] \frac{4 {h}^{2}  + 74h + 351 - (351)}{h}  =  \\ [/tex]
[tex] \frac{4 {h}^{2} + 74h }{h}  =  \\ [/tex]
[tex] \frac{4 {h}^{2} }{h}  +  \frac{74h}{h}  =  \\ [/tex]
[tex]4h + 74[/tex]
_____________________________________________
[tex]ah + b[/tex]
[tex]4h + 74[/tex]
So :
[tex]a = 4[/tex]
[tex]b = 74[/tex]