First of all we will divide the figure in two shapes. One is hemisphere and other is a cuboid. 
Volume of hemisphere: 
[tex] \boxed{ \tt \:v =  \frac{2}{3} \pi {r}^{3} }[/tex]
Volume of cuboid: 
[tex] \boxed{ \tt \: v = length \times breadth \times height}[/tex]
[tex]\red{ \rule{35pt}{2pt}} \orange{ \rule{35pt}{2pt}} \color{yellow}{ \rule{35pt} {2pt}} \green{ \rule{35pt} {2pt}} \blue{ \rule{35pt} {2pt}} \purple{ \rule{35pt} {2pt}}[/tex]
Volume of the hemisphere ⤵️
[tex] \sf \dashrightarrow \: v =  \frac{2}{3}  \times  \frac{22}{7}  \times  {3}^{3} [/tex]
[tex] \sf \dashrightarrow \: v =  \frac{2}{ \cancel3}  \times  \frac{22}{7}  \times   \cancel{27}[/tex]
[tex] \sf \dashrightarrow \: v =  2 \times  \frac{22}{7}  \times  9[/tex]
[tex] \sf \dashrightarrow \: v =   \frac{396}{7} [/tex]
[tex] \sf \dashrightarrow \: v =   56.6 \:  {cm}^{3} [/tex]
Volume of the cuboid ⤵️
- Length = 8cm
- Breadth = 10cm
- Height = 4cm
[tex] \bf \multimap \: v = 8 \times 10 \times 4[/tex]
[tex] \bf \multimap \: v = 80 \times 4[/tex]
[tex] \bf \multimap \: v = 320  \: {cm}^{3} [/tex]
Now, Total volume ↯
[tex] \rm \leadsto \: total \: volume = 56.6 + 320 \:  {cm}^{3} [/tex]
[tex] \rm \leadsto \: total \: volume = 376.6\:  {cm}^{3} [/tex]
If we round to the nearest tenth the total volume is ᭄
[tex] \rm  \twoheadrightarrow volume = 380 \:  {cm}^{3} [/tex]