We know,
[tex] { \longrightarrow \bf \qquad { { Volume_{(cone) }=    \dfrac{1}{3}  \pi {r}^{2}h }}} [/tex]
Where,
- r is the base radius of the cone.
- h is the height of thr cone.
Here,
- Radius of the cone is 6 .
- Height of the cone is 8 .
⠀
Substituting the value in the formula :
We will take the value of π as 3.14 .
⠀
[tex]{ \longrightarrow \sf \qquad { { Volume_{(cone) }=    \dfrac{1}{3}  \times 3.14  \times {6}^{2} \times 8 }}} [/tex]
⠀
[tex]{ \longrightarrow \sf \qquad { { Volume_{(cone) }=    \dfrac{1}{ \cancel{3}}  \times 3.14  \times  \cancel{36} \times 8 }}} [/tex]
⠀
[tex]{ \longrightarrow \sf \qquad { { Volume_{(cone) }=    {1} \times 3.14  \times 12 \times 8 }}} [/tex]
⠀
[tex]{ \longrightarrow \sf \qquad { { Volume_{(cone) }=    {1} \times 3.14  \times 96 }}} [/tex]
⠀
[tex]{ \longrightarrow \bf \qquad { { Volume_{(cone) }=    301.44}}} [/tex]
⠀
Therefore,
- The volume of the cone is 301.44 units³.
⠀