Respuesta :
Answer:
We know that:
- [tex]\left[\begin{array}{cc}a&b\\c&d\end{array}\right] = ad - bc[/tex]
- The 2x2 identity matrix has a = d = 1 and b = c = 0
- sin²x + cos²x = 1
#1
The values:
- [tex]P = \left[\begin{array}{cc}-sinx&cosx\\cosx&sinx\\\end{array}\right] = -sin^2x-cos^2x= -1[/tex]
- [tex]Q = \left[\begin{array}{cc}sinx&cosx\\cosx&-sinx\\\end{array}\right] = sin^2x-(-cos^2x)= sin^2x+cos^2x=1[/tex]
- [tex]I = \left[\begin{array}{cc}1&0\\0&1\\\end{array}\right] = 1-0=1[/tex]
The sum:
- PQ + 2I = (-1)*1 + 2*1 = -1 + 2 = 1
#2
The values:
- [tex]P = \left[\begin{array}{cc}cosx&-sinx\\sinx&cosx\\\end{array}\right] = cos^2x-(-sin^2x)= 1[/tex]
- [tex]Q = \left[\begin{array}{cc}cosx&sinx\\-sinx&cosx\\\end{array}\right] = cos^2x-(-sin^2x)= 1[/tex]
- [tex]I = \left[\begin{array}{cc}1&0\\0&1\\\end{array}\right] = 1-0=1[/tex]
The sum:
- PQ + 2I = 1*1 + 2*1 = 1 + 2 = 3