Find the particular solution of the differential equation?
/=5^3+9^2, when =1, =8
                                             
                                          
                                          
                                        
											 
											Answer:
[tex]\displaystyle s = \frac{5t^4}{4} + \frac{9}{t} - \frac{9}{4}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Equality Properties
Algebra I
Calculus
Derivatives
Derivative Notation
Solving Differentials - Integrals
Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
*Note:
Ignore the Integration Constant C on the left hand side of the differential equation when integrating.
Step 1: Define
[tex]\displaystyle \frac{ds}{dt} = 5t^3 + \frac{9}{t^2}[/tex]
t = 1
s = 8
Step 2: Integrate
Step 3: Solve
Particular Solution: [tex]\displaystyle s = \frac{5t^4}{4} + \frac{9}{t} - \frac{9}{4}[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Differentials Equations and Slope Fields
Book: College Calculus 10e