Answer:
Step-by-step explanation:
A). g(x) = x² - 9x + 14
      Since coefficient of highest degree term (x²) is positive, parabola will open upwards.
     For any parabola opening upwards,
     Right end behavior,
     y → ∞ as x → ∞
B). Let the equation of the linear function is,
     f(x) = mx + b
     Where m = slope of the function
     b = y-intercept
     From the graph attached,
     Slope 'm' = [tex]\frac{\text{Rise}}{\text{Run}}=\frac{-(2+1)}{(0+1)}[/tex]
     m = -3
     b = -1
     Therefore, function 'f' will be,
     f(x) = (-3)x - 1
     f(x) = -3x - 1     
     g(x) = x² - 9x + 14
            = x² - 7x - 2x + 14
            = x(x - 7) - 2(x - 7)
            = (x - 2)(x - 7)
     If h(x) = f(x)g(x)
     h(x) = -(3x + 1)(x -2)(x - 7)
     For h(x) ≥ 0
     -(3x + 1)(x - 2)(x - 7) ≥ 0
      [tex]x\leq -\frac{1}{3}[/tex] Or 2 ≤ x ≤ 7
     Therefore, for 2 ≤ x ≤ 7, h(x) ≥ 0
C). If k(x) = [tex]\frac{h(x)}{(x-2)}[/tex]
     k(x) = [tex]\frac{-(3x+1)(x-2)(x-7)}{(x-2)}[/tex]
     k(x) = -(3x + 1)(x - 7)
     For k(x) = -56
     -(3x + 1)(x - 7) = -56
      3x² -20x - 7 = 56
      3x² - 20x - 63 = 0
      3x² - 27x + 7x - 63 = 0
      3x(x - 9) + 7(x - 9) = 0
      (3x + 7)(x - 9) = 0
      [tex]x=-\frac{7}{3},9[/tex]