Answer:
( choice B )  { x , y , z } = { -8 , 10 , -6 }
Step-by-step explanation:
* System of Linear Equations entered :
   [1]    2x + 4y + 3z = 6
   [2]    5x + 8y + 6z = 4
   [3]    4x + 5y + 2z = 6
* Solve by Substitution :
// Solve equation [3] for the variable  z  
  [3]    2z = -4x - 5y + 6
  [3]    z = -2x - 5y/2 + 3
// Plug this in for variable  z  in equation [1]
   [1]    2x + 4y + 3•(-2x-5y/2+3) = 6
   [1]    -4x - 7y/2 = -3
   [1]    -8x - 7y = -6
// Plug this in for variable  z  in equation [2]
   [2]    5x + 8y + 6•(-2x-5y/2+3) = 4
   [2]    -7x - 7y = -14
// Solve equation [2] for the variable  y  
  [2]    7y = -7x + 14
  [2]    y = -x + 2
// Plug this in for variable  y  in equation [1]
   [1]    -8x - 7•(-x +2) = -6
   [1]    -x = 8
// Solve equation [1] for the variable  x  
   [1]    x = - 8  
// By now we know this much :
    x = -8
    y = -x+2
    z = -2x-5y/2+3
// Use the  x  value to solve for  y  
    y = -(-8)+2 = 10  
// Use the  x  and  y  values to solve for  z  
  z = -2(-8)-(5/2)(10)+3 = -6