We observe that the relationship between the variables is linear.
 Therefore, we look for an equation of the form:
 [tex]b = m * a + b '
[/tex]
 Where,
 m: slope of the line
 b ': intersection with the y axis
 a: independent variable
 b: dependent variable
 The value of b 'occurs when a = 0.
 We have then:
 [tex]b '= -10
[/tex]
 (See table)
 Then, the value of the slope is found using the following formula:
 [tex]m =  \frac{b2-b1}{a2-a1} [/tex]
 Substituting values:
 [tex]m = \frac{-7-(-10)}{1-0} [/tex]
 Rewriting:
 [tex]m = \frac{-7+10}{1} [/tex]
 [tex]m = 3 [/tex]
 Thus, the linear equation is:
 [tex]b = 3*a-10 [/tex]
 Rewriting:
 [tex]3*a-b=10 [/tex]
 Answer:
 The equation is:
 C.) 3a-b=10