OK.  I did it.  Now let's see if I can go through it without 
getting too complicated.
I think the key to the whole thing is this fact:
      A radius drawn perpendicular to a chord bisects the chord.
That tells us several things:
-- OM bisects AB.  
    'M' is the midpoint of AB.
    AM is half of AB.
-- ON bisects AC.
    'N' is the midpoint of AC.
    AN is half of AC.
--  Since AC is half of AB,
     AN is half of AM.
     a = b/2  
Now look at the right triangle inside the rectangle.
'r' is the hypotenuse, so
                                            a² + b² = r²
But  a = b/2, so             (b/2)² + b² = r² 
(b/2)² = b²/4                   b²/4   + b² = r²
Multiply each side by 4:     b² + 4b² = 4r² 
                                       -  -  -  -  -  -  -  -  -  -  -
                                            0  + 5b² = 4r²   
Repeat the 
original equation:                a² +  b² =  r²
Subtract the last
two equations:                   -a² + 4b² = 3r²  
Add  a²  to each side:               4b²  =  a² + 3r² .    <=== ! ! !